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Abstract – Outliers identification is essential in data analysis since it can make wrong inferential statistics. This study aimed 

to compare the performance of Boxplot, Generalized Extreme Studentized Deviate (Generalized ESD), and Sequential 
Fences method in identifying outliers. A published dataset was used in the study. Based on preliminary outlier identification, 
the data did not contain outliers. Each outlier detection method's performance was evaluated by contaminating the original 
data with few outliers. The contaminations were conducted by replacing the two smallest and largest observations with 
outliers. The analysis was conducted using SAS version 9.2 for both original and contaminated data. We found that 
Sequential Fences have outstanding performance in identifying outliers compared to Boxplot and Generalized ESD. 
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Introduction 
An outlier is an observation that lies far from the other observation. It is also a strange point in a data set 

that differs greatly from the others. An outlier may affect numerical measures in a distribution. Outliers may give 
inaccurate results of analysis, especially for a small sample. Meanwhile, the effect of an outlier on means might 
seem smaller for the large sample, but increased variance can change the statistical significance of regression 
estimates. 

Many different methods have been used to detect outliers. In general, an outlier is a point in data that lies far 
away outside the norm for a variable or population (Kuna et al., 2014). It is also known as observations 
inconsistent with the remainder of the data (Sun et al., 2017; Swersky et al., 2016). Meanwhile, Swersky et al. 
(2016) described an observation that diverges so much from other observations to arouse suspicions as an outlier.  
Outliers may arise from several different mechanisms or causes. They can be those that appear from the inherent 
variability of the data and those that appear from the data's errors.  

Outlier is unavoidable (Bashiri & Moslemi, 2013; Mahapatra et al., 2020); Bailey, 2018). This is because when 
using either parametric or nonparametric tests, the existence of outliers can induce the inflation of error rates 
and substantial distortions of parameter and statistic estimates (Liao et al., 2016; (Parrinello et al., 2016)). Since 
the outliers may substantially impact most parametric tests, awareness of the outliers has been concentrated on 
identifying outliers (Schwertman et al., 2004; Yang et al., 2011).  

Outliers should be investigated carefully, as their presence and effect will cause misinterpretation in the 
statistical analysis (Benhadi-Marín, 2018). When a potential outlier is detected, a careful investigation must be 
performed well as the mistake in calculations or a data coding will lead to an inaccurate conclusion. The suspected 
outlier may be a good observation that may provide beneficial information (Erdogan, 2014). The aim of the 
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study is to compare the performance of the Boxplot, Generalized Extreme Studentized Deviate (Generalized 
ESD), and Sequential Fences method in identifying outliers. The study is expected to provide the best 
performance in identifying outliers. 
 
Materials and Methods 

Data 
The data was obtained from a laboratory analysis of calories and sodium content of major hot dog brands 

available in Moore & McCabe (1989). The researchers for Consumer Reports analyzed three types of hot dogs: 
beef, poultry, and meat (mostly pork and beef, but up to 15% poultry meat). There are about 54 observations 
with the variable of hotdog (beef, meat, or poultry) and calories (calories per hot dog). In order to make the 
comparisons, the data was modified by contaminating with a few outliers to observe the performance of several 
outlier detection methods in identifying outliers.  

Boxplot for Identifying Outlier 
Information such as the data's location, spread, skewness, and tails can be obtained easily in a  boxplot. This 

graphical plot is widespread to identify outliers (Dawson, 2011; Walker et al., 2018). This method is very simple 
and does not use the extreme potential outliers, a point beyond an outer fence, which may disturb the computing 
of the spread of the data (Schwertman et al., 2004). The fence procedure uses the estimated interquartile range 
(IQR), often referred to as the H-spread. H-spread is known as the averages of the first and third quartiles. The 
inner fences, 𝑓1and 𝑓3𝐴nd outer fences, 𝐹1  and 𝐹3 , of the Tukey’s boxplot are defined as follows: 

 
𝑓1 = 𝑞1 − 1.5(𝐻 − 𝑠𝑝𝑟𝑒𝑎𝑑),  𝑓3 = 𝑞3 + 1.5(𝐻 − 𝑠𝑝𝑟𝑒𝑎𝑑), 

𝐹1 = 𝑞1 − 3(𝐻 − 𝑠𝑝𝑟𝑒𝑎𝑑),  𝐹3 = 𝑞3 + 3(𝐻 − 𝑠𝑝𝑟𝑒𝑎𝑑),   (1) 
 

where 𝑞1 and 𝑞3 
are first and third sample quartile, respectively. Meanwhile, the 𝐻 − 𝑠𝑝𝑟𝑒𝑎𝑑 equals to 𝑞3 − 𝑞2. 

Observations that fall in the middle of the inner and outer fences are referred to as "outside" outliers, while 

those that fall under the outer fence, 𝐹1 , or beyond the outer fence, 𝐹3 , are referred as "far out" outliers.  For 
constructing a boxplot, a five-number summary need to be computed. The five-number summary of a set of 
observations consists of the smallest observation, the first quartile, the median, the third quartile, and the largest 
observation. 
 
Extreme Studentized Deviate (ESD) for Identifying Outlier 

Extreme studentized deviate (ESD) is an outlier identification method in univariate data set (Ryu et al., 2021). 
It is also called as Grubb test. However, Grubbs method is only able to detect a single outlier. Thus, another 
procedure was proposed to detect more than one outlier in a sample, such as generalized extreme studentized 
deviate by Rosner, (1983). Brant, 1990) compared Rosner's (1983) generalized ESD and an extension of Tukey's 
boxplot, which was known as the boxplot rule.  The generalized ESD method is computed as follows: 

 

𝐺𝑖 =
max|𝑥𝑖−�̄�|

𝑠
,  =i 1,…, n      (2) 

 
where �̄� sample mean and s is sample standard deviation. Observation with highest |𝑥𝑖 − �̄�| value needs to be 

removed. Then, the 𝐺𝑖  needs to be recalculated for the remaining 𝑛 − 1 observations. These processes are 
repeated until 𝑚th contaminated observations have been removed. The mean and standard deviation are 
recalculated sequentially after the observation is deleted with the largest absolute standard deviation.  

 
The values obtained from Equation (2) will then be compared to the critical value, 𝜆, at 𝛼 = 0.05, as shown 

in Iglewicz & Hoaglin (1993). An observation is considered an outlier when 𝐺𝑖 exceeds the critical value, 𝜆. But 
if 𝐺𝑖 does not exceed the critical value, 𝜆, then it is unnecessary to remove the observation and continue the 

process on the remaining 𝑛 − 1 observations. 

 



Aceh Int. J. Sci. Technol., 11(1): 38-45 
April, 2022 

doi: 10.13170/aijst.11.1.23809 

 40 

 
Sequential Fences for Identifying Outlier 

Many modifications have been built on Tukey's original boxplot (Walker et al., 2018; Babura et al., 2017). 
Schwertman et al. (2004) had come out with new modifications by proposing simple yet more general fences 
method than Tukey's boxplot model as the outer fences, 𝐹1  and 𝐹3  maybe too conservative for many 
practitioners, which may tend to neglect many outliers. Sequential Fences enable flexibility in setting the "outside 
rate," which is the probability that an observation from a non-contaminated normal population is outside a 
specified limit or boundary. However, the effect of outside rates for small samples showed incorrect 
identification of observations as an outlier (Hoaglin et al., 1986). It will reduce the probability of misclassifying 
an observation as an outlier in large data sets and correctly identifying multiple outliers. According to 
Schwertman et al. (2004), calculating the fences in the method of sequential fences is as follows:  
 

𝐹𝑛 = 𝑞2 ±
IQR

𝑘𝑛
𝑡df,α ,         (3) 

 
where  
𝑛 =  the sample size (20 ≤ 𝑛 ≤ 100),  

𝑘𝑛 = the appropriate adjustment relating the expected values of the IQR to the standard deviation for various 
sample sizes.  

df = degrees of freedom which is calculated using the following formula: 
   7.6809524+  0.05294156𝑛 − 0.00237𝑛2 . 

 
Schwertman & de Silva (2007) clearly describes plotting sequential fences.  The method can formulate a 

sequence of fences to detect whether more outliers are expected to occur. For contaminated observations, the 
existence of an outlier is identified by using the "inward" testing. It is done by formulating a series of fences 
sequentially and checking until the number of observations beyond a particular fence is not more than 𝑚. This 

procedure will also be applied to the other sides of the fences. Therefore, if more than 𝑚 observations are 
detected beyond a particular fence, these observations are said to be outliers.  
 
Methodology 

The boxplot, generalized ESD, and sequential fences methods will be applied to identify possible outliers in 
the data. In case of no outliers in the original data, the original data will be contaminated with few outliers. The 
two highest and the two lowest observations in the original data set were replaced with outlier observations. For 
the two highest values, observations 22 and 34 were arbitrarily replaced with �̄� + 3𝜎 and �̄� + 5𝜎 , respectively. 

Meanwhile, for the two lowest values, observations 44 and 50 were replaced by �̄� − 3𝜎 and �̄� − 5𝜎 respectively. 
The �̄� and 𝜎 are the mean and median, respectively. 

The PROC BOXPLOT in SAS program version 9.2 was used to build the boxplot of the data. After 
conducting the boxplot analysis, it proceeded to identify outliers using generalized ESD. Then PROC MEANS 
will be used to compute Equation (2). Observation with highest |𝑥𝑖 − �̄�|  the value will be removed. The process 

will be repeated with 𝑛 − 1 observations until removed all contaminated observations. Comparing the value that 
maximizes |𝑥𝑖 − �̄�| with the critical value will let us know whether the observation is an outlier.  

 
Results 
Outlier Detection for the Original Data 

A boxplot of original data is displayed to identify whether the data has an outlier (Figure 1). There is no 
observation in both the lower and upper fences of the boxplot. The second method that was employed to identify 
outliers is the generalized ESD method. Not like in the boxplot method, identifying outliers using the generalized 
ESD requires us to specify the significance level. In this study, a significance level of 0.05 was specified.  
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Figure 1. Boxplot of the original data 

 
Table 1 compares the values for each observation that maximize absolute standardized deviation, 𝐺𝑖 with the 

critical values, 𝜆 at 𝛼 = 0.05 to test for outliers in the data. The table displays only 4 smallest observations.  If 
the values exceed the critical value, then the observation is an outlier. However, if we look through each value 
of 𝐺𝑖 , none of them exceeds the value of 𝜆. Thus, based on the generalized ESD method, we found no outliers 
in the original data.  
 

Table 1. Outlier identification using generalized ESD for the original data. 

Observation 
Number, i 

Mean for ith  

observation 

Standard 
deviation 𝑮𝒊 

Critical 

Value,   

50 145.444 29.383 2.033

 

3.159 

44 146.566 28.474 2.092

 

3.151 

42 147.712 27.491 1.954

 

3.144 

45 148.765 26.684 1.865

 

3.136 

 
While for the sequential fences method, after conducting Step 1 of the algorithm,  it was obtained 𝑞1 =

132,𝑞2 = 145, 𝑞3 = 173 and IQR = 41 from the original data. At the sample size of 𝑛 = 54, the conversion table 
from Schwertman & de Silva (2007) gives us 𝑘54 = 1.34285 in Step 2. Since 𝛾 = 0.05 was chosen, the 𝐶𝑚 values 
were obtained from row 4 of the probability table of Schwertman & de Silva (2007) corresponds to the 1 − 𝛾  

value is 0.95. The values of 𝐶𝑚 are divided by the sample size to compute the 𝛼𝑛𝑚  values and obtain Table 2. 
  

Table 2. Values for 𝛼𝑛𝑚  for 𝑛 = 54 and 𝛾 = 0.05. 

𝒎 1 2 3 4 5 6 

𝛼𝑛𝑚 0.0009 0.0066 0.0151 0.0253 0.03648 0.0484 

 
 

The procedures are continued by computing 𝑡 with a degree of freedom, df = 29. The result of this step is 
displayed in Table 3. 

 

Table 3. 𝑡 Statistics for 𝑛 = 54 and 𝛾 = 0.05 in Sequential Fences  

𝒎 1 2 3 4 5 6 

𝑡 -3.4118 -2.6394 -2.2765 -2.0384 -1.8597 -1.7156 

 

 
Then lower and upper fences are calculated based on Equation (3), and the results are displayed in Table 4. 
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Table 4. Values for upper fences and lower fences 

𝒎 Lower Fences Upper Fences 

1 40.829 249.171 

2 64.415 225.585 

3 75.494 214.506 

4 82.763 207.237 

5 88.218 201.782 

6 92.620 197.380 

 
Once the lower and upper fences table is obtained, a scatter plot with the y axis against the x-axis is developed. 

The scatter plot values of fences are drawn sequentially from 𝑚 = 1 on both sides. But when there are no 
observations more than an upper fence or lower than a lower fence on 𝑚 = 1, the sequential procedure is 
stopped. Based on the plot (Figure 2), it can be observed that there are no observations beyond the first upper 
fence and first lower fence, 𝑚 = 1.  There is no outlier in the original data based on the sequential fences method. 

 
Figure 2. Scatter plot with sequential fences for original data 

 
Outlier Detection for the Contaminated Data 

The boxplot of the contaminated data is displayed in Figure 3, in which only observations 34, 44, and 50 are 
identified as outliers; even four observations were contaminated.  
 

 
 

Figure 3. Boxplot of the contaminated data 
 

For the generalized ESD method, the values for each largest absolute standardized deviation, 𝐺𝑖  of the 
contaminated data were recalculated for the two largest and smallest observations. The result of the calculation 
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is presented in Table 5. The first largest absolute standardized deviation comes from observation 50. Since the 
value of 𝐺1 = 3.518 ≥ 𝜆 = 3.159; hence, based on the generalized ESD, observation 50 is an outlier. The second 
largest of 𝐺2  corresponds to observation 34 with 𝐺2 = 3.893 ≥ 𝜆 = 3.151. Thus observation 34 is also an outlier.  

 
Table 5. Outlier identification using generalized ESD for the contaminated data for the two largest and 

smallest observations 

Observation 
number 

Mean for 𝒊𝐭𝐡 

observation 

Standard 
deviation 𝑮𝒊 

Critical 

Value,   

50 145.866 41.885 3.518

 

3.159 

34 148.646 36.915 3.893

 

3.151 

44 145.882 31.252 2.835

 

3.144 

22 147.620 28.916 2.973

 

3.136 

 
Meanwhile, the third largest of 𝐺3𝐶orresponds to observation 44. But, the value of 𝐺3 = 2.835 ≤ 𝜆 =

3.144.Then, observation 44 is not an outlier. With the same calculation, observation 22 is also not an outlier. 
Hence, the generalized ESD method can detect two of the four potential outliers. For the sequential fences 
method, the same procedure eas run for the contaminated data based on Algorithm 1. Based on Table 6, there 
are four observations suspected as outliers: the contaminated observations. To confirm whether all suspected 
outliers are true outliers, comparing the observations with the fences based on the "inward" testing is needed. 
Based on Figure 4, few observations lie far apart from the other observations that are suspected as outliers.  
 

Table 6. Outlier identification outliers using the sequential fences method for the contaminated data 

Suspected  

Outliers 

Contaminated  

Values 

Original 

Values 
Lower Fence Upper Fence 

34 292.361 195 −  
𝑚 = 1 

(249.171) 

22 233.595 191 −  
𝑚 = 2 

(225.585) 

44 57.294 87 
𝑚 = 2 

(64.415) −  

50 -1.473 86 
𝑚 = 1 

(40.829) −  

 

 
Figure 4. Scatter plot with sequential fences for the contaminated data 

 
In Figure 4, observation 34 is located beyond the first upper fence, 𝑚 = 1. By using suspected "inward" 

testing, if the number of observations ≥ 𝑚, these observations are outliers. Thus, observation 34 is an outlier. 
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The next potential outlier is observation 22, which is located between the second upper fence, 𝑚 = 2, and the 
first upper fence 𝑚 = 1.  Hence, observation 22 is also an outlier. Since at the third upper fence, 𝑚 = 3 with the 
value of the fence is 214.506, there are no more suspected outliers, the procedure of constructing the next series 
of upper fences is stopped. 

An observation is located below the fence for the first lower fence 𝑚 = 1, which is observation 50. Thus it 
is an outlier. For the next lowest observation, 44 is also an outlier since the observation is located between the 
second lower fence, 𝑚 = 2 and the first lower fence 𝑚 = 1. Meanwhile, there are no more potential outliers for 
𝑚 = 3 with the value of the lower fence being 75.494, so the process of constructing the next series of lower 
fences is ended. 

 
Discussion 

One of the important stages before conducting data analysis is to explore the data. Through data exploration, 
researchers will know the behavior and characteristics of the data to be analyzed so that later they will be able to 
determine a more appropriate analysis method. At the data exploration stage, one thing that is important to do 
is whether the data to be analyzed contains outliers. As we commonly know, the presence of outliers in the data 
will have many consequences and result in inaccurate or valid analysis results. 

Many methods have been developed to identify outliers in univariate data. The methods that have been 
developed take into account the distribution of the data. What has been done in this research is to compare 
several outlier detection methods, including Boxplot, Generalized Extreme Studentized Deviate, and Sequential 
Fences. Boxplot has a good enough performance to detect one or more outliers. Unfortunately, the performance 
of this method is only good for symmetrical data. Generalized Extreme Studentized Deviate has a fairly good 
performance on symmetrically distributed data, but this method is only good for detecting a single outlier. 
Meanwhile, Sequential Fence is a method that can be used to identify one or more outliers for both symmetrical 
and skewed distributed data. This is because the formula used has taken into account the validity of the data. 
 
Conclusion 

The overall results show that boxplot, generalized ESD, and sequential fences methods could not identify 
any outliers in the original data. After contaminating the original data with four outliers, not all methods can 
identify all of them as outliers. Both boxplot and generalized ESD methods could only identify three potential 
outliers, few of them were different observations. The boxplot could not identify observation 22 as an outlier, 
and the generalized ESD method could not identify observation 44 as an outlier. Meanwhile, the sequential 
fences method can identify all four contaminated observations as outliers. The sequential fences method for 
contaminated data shows that this method is very sensitive to the presence of outliers as it can detect all the 
contaminated observations correctly. Therefore based on these results, the Sequential Fences method was much 
more effective than the Boxplot and Generalized ESD method at detecting multiple outliers. 
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